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SOLUTION OF THREE-DIMENSIONAL PROBLEMS OF THE
THEORY OF ELASTICITY FOR SOLIDS OF REVOLUTION BY
MEANS OF ANALYTICAL FUNCTIONS

A. Y. ALEXANDROV

Novosibirsk Institute of Engineers of Railway Transportation

Abstract—By means of superposition relations are established between space states on the one hand. and elemen-
tary auxiliary states, (plane states and states corresponding to the deplanation of plane sections of cylindrical
bodies). on the other hand. In the particular case it is the relations between axisymmetric space and piane states.

The derived relations are employed for the solution of spatial problems by means of the apparatus of the
theory of analytical functions of a complex variable. whose application to plane problems is widely known [1}.

1. RELATIONS BETWEEN SPACE STATES AND ELEMENTARY STATES
CONNECTED WITH THEM

1.1 Space state

BE 1T supposed that the elastic cylinder with its generators parallel to the axis y, and with
its cross-section symmetrical in relation to the axis . is in a state formed by the superposition
of the plane strain (7,. = 1., = v = 0} and the state corresponding to the deplanation of
the cross-sections of the cylinder in the direction of the axis y

lo,=0,=0.=1.=w=u=0)Fig L.

x
The states of stress and strain of the cylinder we shall consider as being dependent on the
parameter /, whose value can be changed. The cylinder may be isotropic or transversely-
isotropic with an axis of elastic symmetry . homogeneous or heterogeneous with elastic
parameters dependent only on the coordinate =
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By rotating the contour of the cross-section of the cylinder 1n relation to the axis -
let us excise from the cylinder a solid of revolution. It should be noted that such an operation
15 possible not for just any form of the cross-section. Therefore. let us temporarily introduce
the restrictions making this operation possible. assuming that the function x(z) = rz)
for half the contour, lying to one side of the axis z. is a single-valued funcuon.

The surface of the excised solid of revolution will fall under the action of certain forces.
If we were now to displace these forces along the surface of the solid by revolving around
the axis z. the internal stress and displacement will follow the forces without changing in
value. provided the parameter . does not change.

In the excised solid let us pass from the components of stress and displacement in the
Cartesian coordinates x. y. 7 to the components in the cylindrical coordinates r. 6. = and
superimpose these components during their revolution in relation to the solid around the
axis = with simultaneous variations of parameter 4. We shall consider this parameter
to be equal to the angle of rotation y. Rotating through the angle 2n we shall get 4 three-
dimensional state of the solid of revolution whose components are defined by integration
.12, 13]

g, = o, cos*(z+0)+a, sin (v +0)+ 7, sin 2y +6)] do, AR

XV

Ty = l [G,‘u; Sinll}‘-¢—6)+0‘}, Coslly—%{))—rw sin 2+ 0] dy:
~2n

T = I L= =008 20+ 0)+ 1, cos 200+ 0)] dr.
v )

aln

[Toy oSl = 8)+ 1oy sinty+6)] dy,

v
o2n
Ty = ' L‘f:x\ sinij'+3)+fz\~ COSV/*H)] d.": -2
v i)
W= ’ w d:'
U= ‘ ] COS(‘I +(})—e—l Sln(:‘(—“] d."
Vo
i
r = _—wo s =0+ costy )] dy
v )

Here o{z.r. 0L 0,. 7,,. . wir. 8, 2) w v are stresses and displacements (axial. radial. tangen-
tial) of the three-dimensional state: w (x.z. vl u . v, -—will be the displacements of the
auxiliary states in the direction of axes . x, v: the stresses o, (X, 2.7l 0, . 0. .

LT, corres-
pond to plane strain. 7, (x. Z.v)and t,., correspond to deplanation. g, = vg.. +~4, )for
the isotropic and o, = v 0, +v_(E E.Jo.. for the transversely-isotropic body. v. v ,.

v,. are Poisson’s ratio: E.. E. are moduli of elasticity : x = rcost; + ).
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Let us now establish the relations between the three-dimensional and auxiliary states
by means of another superposition. Let us consider a space with an axisymmetric cavity
in a general state of stress (Fig. 2}. By displacing the contour of the meridional section of
the cavity along the axis 5 from n = — o to # = =« let us excise a cylindrical cavity*
(axis 17 lies in the plane x) at the angle 7 to axis y}. Be it noted that such an operation is pos-
sible not just with any form of the contour of the meridional section of the cavity and there-
fore we shall temporarily introduce the same restrictions as for the contour of the cross-
section of the cylinder. For a space with such an excised cylindrical cavity let us pass from
stress and displacement components of three-dimensional states in cylindrical co-ordinates
r. 8.z to components in Cartesian co-ordinates n. . - and superimpose the stress and
displacement components by moving them in relation to space along the axis x from
W= —x ton = x.As a result of such superposition we shall derive a state of stress and
strain of space formed by the superposition of two states—the plane strain

Ty = Ty =1, = 0)
and the state of deplanation (6; = ¢, = 6. = 1,. = w = u; = 0). The components of this
state will depend on the parameter 7 and are defined by the expressions [9], [12]. [13].

oy = f 7 g dn.

Gy = f [6, cos?(B— 1)+ g4 sin(6 — ) — 1,4 5in 26— 7)] dn,

(1.3)

Oy = J. [0, sin®(6—7)+ 04 cOS* (B — )+ 1,4 8in 2(6—7)] dn:
Tegy = f [$(o,— g5 sin 2B — )+ 1,4 cOs 20 —7)] dn.
Toep = f ‘ [1., cos (0 —7)— 1 sin{f —7)] dn,
Ty = ' ‘ [z, sin{f@— )+ 1. cos(@—7) dn:
wy = f ‘ wdn,
Ugy = J [u cos(@—~»)—r sin(f — 7)) dn.

- (14)

Uy = f (u sin(f—7)+ v cos(0—7)] dn.

Here 0.(¢ 2, p) 05y Opy. Tizys W, Uz correspond to plane strain, and 74, (& 2,7 Ty2 .
v, signifies deplanation. For an isotropic body a,;, = v(o., +0y), for a transversely-
isotropic body 6, = v,0;:; + Vv AE/E )0,

* This cavity is shown by a straight dotted line in the bottom view of Fig. 2.
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1.2 The axisymmetric state

Letusderive the relations between the components of a three-dimensional axisymmetric
and auxiliaryv plane state as a particular case from the formulae (1.1). (1.2}, or by means of
superposition analogous to the one described above. In this case the problem is simplified -
the components of the state of deplanation of a cylinder should be taken as equal to zero.
whereas the parameter 4 should not be introduced into the expressions of the plane state
components (that is, we shall not alter the plane state during the rotation of the cylinder:.
[t will be assumed that the plane state of the cvhnder is symmetrical in relation to plane vz
and we shall derive an axisymmetric state by means of superposition while rotating the
plane state through the angle 7 {and not 2x). Thus., we shall arrive at {2-3. 3]

T, = (0, cos’+a,, sin"6)dd. 7. = l 7., df,
v Jo
1.3
ay = ‘ (5, cos™H+a, sin*t) do. T,. = ‘ 1. cos0df:
~ i} v {)
= ' u cos tdo. wo= ’ w, do. 11.0)

v i) “ i)

Through the action of the plane system of body forces X (x.z)and Z . (x. z)on the cylin-
der we shall derive in the solid of revolution an axisymmetric system of body forces 5]
Rir.zyand Z(r, 2

o -

R = ‘ X cosfde. Z=J

v 0

-

Z,do. .

o}

We shall now obtain the relations between the axisymmetric and auxiliary plane states
by means of superposition analogous to the one described above, [or directly from the
formulae (1.3), (1.4)]. Inasmuch as in this case the angle ;' does notaffect the components
of the plane state. obtained by superposition, we shall presume that ; = 0, that is, introduce
integration with respect to y from y = — x to y = x (Fig. 3). Herein, the components
representing deplanation. are converted to zero.
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As a result, we shall find [2-35, 13}

Oy = f (0, cos?0+ a6, sin?6) dy. 6. =| o dy.
U - (1.8)
oy = J (¢, sin*0+ 0, cos?0) dy. T = f 7., cos fdy.
u, = f * ucos gdy. W = j wdy. (1.9
When body forces are involved »
Xy = f X cos 6dy. Z = f Z dy. (1.10)

The derived relations between the plane and axisymmetric state components shall be
regarded as integral equations with respect to the components of the axisvmmetric state.
Let us reduce these equations to the Abel-type equations and solve them. As a result we shall
obtain

1 7 6‘0-xi1+0\'}) d.\'
G,+0g= — = — ; > ER
n.), cx Nxm=rT)
t 7 éo:, dx
G: = ”_J L ] 3.
nJ, 0x (lxT—r7) (1.11)
1 17 de, ,—0,.) 2x>—r° 3
G,—0g = —— AL ——dX + .
nJ, cx P (Xt —=rT) re
| B & S x dx
Ty, = "—J - PRI
nJ, ox rJixc—ro

4

Zlim{x(c,~0,)] as x > x|
- )

/_\
~
o
I

9
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1 ¢ Cu vdx b7 Cw dx N
U= — ' RS S S W= - ‘ ST T Ty frio
P A S N A A TJ, X \l\“v- (s}
I 7" (R Ndx ] 1 7 dx
R= —- | e e s Z=--| i -y IR
), X rIXT =) T 0N N

2. REPRESENTATIONS OF THREE-DIMENSIONAL STATE COMPONENTS
OF A HOMOGENEOUS ISOTROPIC BODY IN TERMS OF ANALYTICAL
FUNCTIONS OF A COMPLEX VARIABLE OR CAUCHY-TYPE INTEGRALS

2.1 Spuce stare

In the relations (1.1). {1.2) let us pass from integration with respect to ¢ to integracon
with respect to x. By utilizing the Kolosov--Muskhelishvili formulae and the solution of
the torsion problem. let us represent the elementary state components in terms of functions
o, )i, vy and O, of a complex variable [ = -+ ix, also dependent on the parameter
> Let us presume that as related to ; these functions may be expanded in trigonometric
series

Ol = Y ol il = Y e =00 Y e (2

where @ (). ¥ () and ® () are functions analvtical in the region occupied by the meridional
section of the body satisfying the conditions @) = (— 1/"@ _ (). wal) = (— 1 (0
D) = (= 1ID_ L)

By applving the properties of analytical functions. let us make some transformations
and obtain {9. 12, 13]

] inth st

e L o o
g: = N ;‘J Lz‘Pn(U"‘:-T_>)(,Dn(s)“'»'/n(s)J
n=-x ! i
T(J—:‘ dd
< T, —| T
i )\L‘S"l’)(%"”]
1 Cmt) ~
G, 0y = S o 2L+ 200 — 122 = Doty +wl0h 12.2)
n= -5 “r
(== d¢
X Tn<; — |
=0l = 0]
) Vj' emt) Olf L 5 o
GOyt 2iTy = ) - ’ P21 = 2@+ (22— Dol d)
n= - LJF

L=z dc
fw"'\;)ﬂcb;.ti)}T,,«:(') e
NN SR}
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7 eim’? 1 i
T, +iTg = — Z —n_J. [(2:~C)(p;,'(:)+uﬁ,(:)—%;@,’,(ﬁ)}
XT,.H(E—.: _ dsv .
ri | VIE=0C 1]
X ein(i H
= T [ B2 0= 0]
n= -y =ML J;
X - . -l
\ T Tle= =10 (=3)
4 ein!' 1
u-+ir = — }: 3 ([zqo,.(:H(Z:—:)cp;.(CHu’/"(:)
n= -z <HT U7

{—= d/
IO T | —]  ————.
el 1( ri ) VK= —D]

Here t = z+ir. x = 3—4v. p will be Lamé’s constant. T,[({ —z)ri] is Chebyshev's poly-
nomial of the first type (7., = T,). For definiteness let us select one of the branches of the
root \ [({—n(I—1)].

Integration from f to t may be conducted along any line lving on the meridional section
of the body. It follows from this that the restrictions superimposed in 1.1 on the contour
of this section may be removed [7].

The analytical functions involved in (2.2). (2.3) may be representied by Cauchy-type
integrals. By changing the order of integration and computing the internal integrals. it
becomes possible to express the components of the three-dimensional state not in terms of
analyvtical functions but by the density of the Cauchy-type integrals [11].

2.2 The axisvmmetric state

The representations of the axisymmetric state components may be derived from the
expressions (2.2). (2.3) or by the procedure analogous to the one described above. In the
last case let us introduce into the relations (1.5) (1.6) the expressions of the plane state
components in terms of two analytical functions ¢(() and y(J). We shall use for this purpose
the Kolosov-Muskhelishvili formulae with terms introduced by Stevenson. that would
account for body forces. Let us take into consideration that because of the symmetry of
the plane state in relation to the axis =. functions ¢ and y possess the property of parity

Q)=o) WY =¥ (2.4)

In the expressions (1.5), (1.6) let us pass from integration with respect to 6 to integration
with respect to x and after the transformation obtain [2-5. 13]

1 ds
== R =2z =" (=Y )—o——3
o niJ;[ PlmiRe =t l//(')‘\f’[(l—t)(l—t)]

1 c{ dx
— Utr. z)+ = Re W*(x, z2)———-/.
+{ Ay Ty ), Re Wi )\/(r'~x2)}
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. d¢ [ . L.
5, = H o1 e = e | )+ (22 = e (D,
Tl Ji V(_—I)(k—lu Tty
..’ds. L j 1'7":»"7 L‘r -y
N R T
¢ . 2x? -t St 1 dx
- J U o b Re WM e |
4., re AN {Fm—x~
Hl+w) 0'10) dg I L "
G = "'_—_‘ﬁf- = 2 - —
r 7”. J: Y G \[(g_”‘%_”} i 4‘]_‘| [+
o r xt—r? X’ dx |
=< ‘ [L' (D T JRe WH :)-]A---—,_ﬁ L
400, e N (r? = x|
= ! ﬂ‘(7 ) () + 1 ()] I :-Ldim
b = mrJ ol I =0 =]
N \dx |
_ ‘;J fm W, ). l{
)- Lo \ “‘ *‘.\ )
| l )+ 22 = D0 () + )] ~—_:’d“‘
U= ——— | (x 2200 O™
l 2umir J; P STy v K=ol =1
-—)\‘ ' ‘Re Whix. 2] - f,d-\- ) }(
[y N U
! c ; do
w= — | o) -2 -0 (D= W) —
"7 i ‘ SO ® N
{ ¢ dx
- Im W, )]
[T J_,mL L rr=x

Here ¢ = (1= 2v)i(] —vi. Utr. 21 will be the body force potentials.

cU 8 = Rir. zi, cU Gz = Zir. 2

WHx oy = Wil D) = ::

L D de Whl%x. =) =

Y .

UL =0 (x.o) =

I
n

~

"X

oo rdr
,—j Utr. 2

T =)

i

\(’

)

UL Dndd

Sl

123

12.6)

P S
{1

As In the preceding case integration from f to ¢ may be performed along any line lving
in the meridional section of the body. As to the integrals shown 1n braces (and relative 1o
the body forces) we shall have J; ..dx = §, ... dx that is. integration with respect 10 x
along L, denotes integration along a straight line passing within the body. between powntx

(—r.z2yand (r. 0.



Three-dimensional problems of the theory of elasticity for solids of revolution 709

On the axis of symmetry we shall have
g. = 20'(z)—zp"(2)—Y'(2) 7,.=0 (2.8)

6 = 0, = (1 +2v@'(z)+ 3z (=) + ¥ ()],
1
w = ﬁ[x(p(:)—zw’(:)—w(:)], u =0 (2.9)

Representations of axisymmetric state components may be derived also by another
method.

Let us consider the derivatives of stress and displacement of a plane state with respect
to x, involved in (1.11), (1.12) as stress and displacement of a certain elastic antisymmetric
plane state as related to the plane yz. By using the Kolosov—Muskhelishvili formulae
involving terms reflecting the presence of body forces, and by making corresponding
transformations, we shall derive expressions within an accuracy of a constant factor
matching the expressions (2.5}-(2.6), if [, ... dx implies here j’:’x ...dx+[* ... dx (that is.

integration with respect to x along L, as earlier, means integration along a straight line,
passing within the body-—in the given case from point (— oc, z) to point (—r, z) and from
point (r. z) to point {oc, z).

One can readily see that representations (2.5). (2.6) are of a general character and may
also be derived with the aid of a general representation of the solution of the equations of
the theory of elasticity in the form of P. F. Papkovich-H. Neuber for the case of axial
symmetry. For this purpose the functions involved in P. F. Papkovich’s formula should
be presented as integrals having the structure of separate components contained in the
expressions (2.5442.6) [7].

We shall represent the functions ¢({) and ¥({}, involved in the expressions (2.5142.6).
by Cauchy-type integrals. Let us change the order of integration, compute the internal
integrals and for the case when body forces are absent derive the following representations
of stress and transposition [11]

1 do

0: = =5 ), [~ 200)+ 2z =0l (o)+ ¥l .

4 fq),( ) 6 L G0 1
Gy = T o)+ —— 3
7 i), Jle=t)e—5] " r 2mir?

{c—z)do
2z — o) At (2.10)
fo[xd)(a)-+-( W01+ oD
~4{1+v)J' (o) © s
= T ) T Jle—ne—n] 0"
1 (¢ —-2z)do
L= | [Qz— 00+ W)
e =g | 2200+ Wiel = T
- f[- Do)+ (22— 0 WV(0) +Plo)
vE 4min ), * - o) NICERTCENE
o (2.11)
, o—2z)deo Co
- - 27— o) (0)+ W(0)] e 2.
4niurL[X®(a)+( 2= OO o= T
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Here o = r+ iz is the fixed point of the contour, functions @) and (o) depict the density
of the Cauchy-type integrals. that is. continuous functions of the points of contour L.
possessing corresponding derivatives,

|
Cyp=—1i x+1Po)+Yio)] da. 2.1
iy

The branch line is to be drawn between points ¢ and  within the region.

3. REPRESENTATIONS OF THREE-DIMENSIONAL STATE COMPONENTS
OF A HOMOGENEOUS TRANSVERSELY-ISOTROPIC BODY IN TERMS OF
ANALYTICAL FUNCTIONS OR CAUCHY-TYPE INTEGRALS

3.1 Three-dimensional state when heating is involved
Representations analogous to {2.2(2.3) may be derived also for a transversely-isotropic
solid of revolution. Let us introduce into the equation (1 1}—(1 2) representations of com-

ponents in terms of analvtical functions ¢,(J,) and ¢,((,), describing plane strain [13
©4(J 4} describing the deplanation of a section and qJJ{H). descrxbmg the stationary tcm-
perature field [18]. Here {; = =+~ ;x(whenj = 1, 2. 3. 4)is the generalized complex variable.

Parameters ~.,. «, are the non-conjugate roots of the characteristic equation

E E. _, . E.
(1 - v;’:i)/:% [G—— e v,‘,.)}.‘ =(l- V;"')E =

/13 = i\"K:/vKl). /_’ = i\/’{Gx:’»G.\-vjn

G,. will be the moduli of shear, K, and K, the coetficients of thermal conductivity

in the plane of isotropy and along the normal to it.
As a result of transformations one can obtain stress and displacement representations

when steady heating is involved. For displacement in case of pure imaginary ~, and -,
they acquire the form

‘ St 3 r, — _r d‘,
w= Vv Y il )T( A - SE
I 7 e Voo (S, il =1)] .
TR ( N (3.2)
) s cmt (T -: "[v—f- d:
u+iv = Z . E ‘ ’I(Pm(k T {" B e
=<, T =i, L \vi(s}—[,)‘s— 'ﬂ
Here [; = z+/,x. t; = 2+=/27 Qp Q2p. P1,- 93, are analytical functions in the domains

which are in affine correspondence to the region occupied by the axial section of the body
and satisfies the conditions

Culd) = (=1, (O =124 oyl =(=1r"o, 4l
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P,_; and f,_, are yielded by the formulae

I+, E.
fl‘l = by Eyl:—yx-/l 2+“ -"xy)~:la f4 =1
1,242 x
T+v,, i -
= 2 T E ey )= — 3
5 i4;E; l: 9o o \xy)Ex /3‘x~:'
1], , E,
P,,2 = EZI:/}_Z(I —";:E:)""x:“ +vxy):l, (3.3)
o.+o v (E/E.) v. 23 E
P, = =0 SV Bl Vam g 43830 g2 Zx)
’ %0 g ey
4o = {lo: o v (E/E)A ol + vy ) E;
0=

(;'g - )‘%)(;‘g - ;%)[] - “;%:‘Ex/E:)]

Here o, and a, are the coefficients of linear expansion of material in the plane of isotropy
and in a direction parallel to the axis of rotation. In this context functions ¢,,({) are con-
nected with the temperature of the body T*(r, z, 6) by the relation

-4 elnB I3 2(3—[3'—i3 d§3
T = .f.mnd' ] , __ (3.4
nzz—ac G Jiy Panlts I3—1; VU=t~ 13)]

3.2 Axisymmetric state when heating is involved

From the expressions (3.2) and the corresponding expressions of stress which are not
cited here, or by a method analogous to the one described previously and connected with
the application of formulae (1.1), (1.2) as well as with the representations of a plane state in
terms of analytical functions, we shall derive representations of axisymmetric state com-
ponents by contour integrals, containing Cauchy-type integral densities ®(g). For the
case of pure imaginary non-multiple roots of equations (3.1) we shall find that

1 d)5(0'3)d0’3

= — (3.5)
¢ migy L3\//[(63-t3)‘63_t3)]
13 d'(c,)do,
a=fvﬁj 19089,
Tomim ) Ve - )(e = 1)]
;3 ®{o ) do.
ar+ae=;zmjf 4o ;) O'J_ )
=1 e =)o - 1] 3.6)

3 —t.—F.
3 @em) [ oo 2D
=1 L; (tj—tj)

— -2} - -~ de;,
* Vo= t)le;— )] Jllo;=t)o;— )] %
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]

I

_i Vj s (D;'{O'J)li 3O’j’_’/_fj _3](10»

et le—t e~y T
1 VRS L AV RSP ey B 15 .]

3 > 7 t
T WA -1 i R PP
wE G e = )e = )] ’
5 (37
L . T/ L/
e O T B I )

Used here are the notations (3.3) and also

]
ml..‘. = l+vx,v+/'f.2vx:

X 2
== =, 133}
E.

Let us note that the plane and axisymmetric temperature fields T*(x. z) and T ¥ir, =
may be connected by the operators

»r d,,Y
T* = zJ [ —a—
0 G =x7)
{3.9)
1 (7 dx
TJ, \,'(.V‘—r‘)

matching the two different types of superpositions described above. The steady-state
temperature 7% is placed by operators (3.9) in accordance with the steady-state temperature
T%.

If the density of the Cauchy-type integrals ®@; in formulae (3.5), (3.6) were to be replaced
by functions ¢;, analytic in the regions obtained by means of affine transformations
0; = o+ A;r of the region occupied by the axial section of the body, then some components
in the right members of {3.6)-(3.8) will be converted to zero. whereas the integrals along
the contour may be replaced by doubled integrals from ; to ¢;.

By applying superposition as described by the expressions (1.11), (1.12), representations
are obtained which correspond to (3.5(3.7) within an accuracy of a constant factor.

4. EQUATIONS FOR FUNDAMENTAL BOUNDARY-VALUE PROBLEMS

4.1 Three-dimensional problems
In the first fundamental problem the boundary conditions have the form

P- = 6:CO8x+ 1, 8N X%
. . . . , 4.1
P+ ipg = Yo, +0g) sin A+1(6, — ay+ 2iT,,) SIN A+ (T, + iT.,) COS 2.

Here p,. p- and p, are the components of the external loading vector. « is the angle of
obliquity of the contour normal of the meridional section to the axis .

In the representations (2.2) let t and { tend to the contour points t, = =, ir, and
g = o+ir, respectively. Be it supposed that the path of integration is the section from 1,
to t, of the contour. Let us iniroduce (2.2) into (4.1) and, considering that cos % = dr-ds.
sin x = —dz;ds. where ds is the arc differential of the contour, derive for the case of u
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homogeneous isotropic body
x e 1 d . i
p- = — ,,=Z. I { T dS [ ( (-“0 U)(Pn(o')_‘//n(a)"id)n(o'):l

ret i de

Vo —to)lo—i5)]

d
+r7 =
® ds

o e i o—1ZI¢ re""lde
XJ;O [‘pn(a) (""’0 O')(Pn(a) l//n(o.)."’:Zq)n(a’):|'I;l—1 roi )\/[(O’—to)(o’—io)] [}

5 (4.2)
ptipp=— 3 i {ro j [(144v)g,(0)+ (220 — 1,0} + ¥ ,(0)]
—Zp ro"dc 1 d
T it
* ( rof ) [(G—IO)(U’_IO)] o % ds

x [ 10 -4nioyfo1+ 22— 010ife) + o)+ 100)
06—z rptido
Fol )\/[(J-IO)(O‘-—fO)J '

Be it noted that if the forces on the surface of the body may be presented in the form

L

xX

p: = Z Cn(zo-ro)eina.

) (4.3)
p+ipg =Y dizg.ro)e™,

n= =

where

C_pl20-T0) = Cfzgs Fo)

then by comparing (4.3) and (4.2) we shall derive a system of equations for defining the
unknown analytical functions. °

The formulae (2.3) make it possible to directly write down the boundary conditions
for the case of the second fundamental problem.

4.2 Axisymmetric problems
The boundary conditions for the first fundamental problem have the form

p, = 0,sin a+17,. COS a, p- = G.COSa+71,. sina. (4.4)
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Supposing thai in (4.2) n = 0 and @, = 0, we shall obtain

I d [ {6 —1z4)do
L= [@(o)— (220 — c)p'(0)—Y(o)] — —,
b nrel ds g, [ot0) =220 =Gl (o) =y )]\"L(a——to)(o'—to)]
1 d fo )
p, = —A{ J (1 +4v)plo)+{225 — o)p (o) + o))
2mi ds J;, )
4.5}
do 1 d

— ———— 1—4 J+(2z (o) + Ylio)]
x\/_w_to)(a_ro) e dsJ,-ﬂ { vip(o 0= 0@ Wla)]

206 —z0) +r§)do
— ~
Vo —=ty){o —To)]

When utilizing the representations in terms of Cauchy-type integrals, the equation for
the first fundamental problem may be put down as [11]

1 d l. . l -z d
p: = —J [~ Do)+ (225 — 0} P(o) +P(0o)]— 0)do it
2mirg ds J, Vo —to)o—1Ey)]
d s {4.6)
! i , . (0 —20)
= — 2z D’ DY [ J — —
Pr 2mird dSJ a1+ (220 = 0)Ple) + ¥lo0] LV llo=toto = o)l + Jlo—tollo— fo)]}
sinx [ , . lo—zo)do o
- —1 N 2z — 0D (c)+ ¥
x do i JL {3+ 4v)Dlo)+ (225 — 0)D'(0) (G)J\r’[(vd—fo)(d"fo)] = — sin .
Let us denote
Ly = p.rds. Ry = J p,r"7 ds+ ‘ Z, sin 2 ds. 1.7
v} [} v ()

here the integration is conducted along the arc, from the point lying on the axis of symmetry.
Then equality (4.6} will be transformed into the form

Zo

f[ Dlg)+ (27— )(D’(a)+‘P(o)][, 97 —1:](10.

2ni VIo—to)lo—1i,)]

27

R, = —-J (D(ai—k(“o——a)(D’(aH‘P{o)][\f[(a—t,,)(a—fo)]—l(a—:o) (4.8)

+— (0= 2o)° - do
Ve —th)lo—ip)]

REL R f 7720 |sinxds'td
— S1
2 S o WHo—tolto—t)] |0 TR

Inasmuch as now the real and imaginary parts of the functions ® and ¥ are not inter-
related. some arbitrariness comes into play.

Let us assume that, as D. I. Sherman has done [16, 17] in reference to a plane problem
that

K Plo)de | | O'(D(U)dO'
— e | s (4.9)
2mi ag—< IniJ, o=

YY) =
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where K = 1 for the case of the first fundamental problem, K = — x in the second one.
Then from expressions (2.10), (2.11) one can obtain

1 — .
w = rpegy [x®(c)— KD(o)] d In[\/[(6 — to)o — To)] + (0 — z,)]

~— | Plo)d| — — |
ami ), (0) l:\/[(o'—to)(a“to)]:l (4.10)
1
Anuir,

_ 1 , (o+6—2z0)(0—24) .
4pnir0L®w)d[\/[(o-zo)(a—fo)] (048220 1

u= -

f [#®(c)+ KD{(a)] d[\/[(a —~to)o—1o)] — (00— zp)]
L

Here it 1s taken into account that ¢, acquires the form
1 N
Co === | [(x+ 1o} +(K - 1)D(s)] da. (4.11)
27 Jy

The expressions for forces should be written down on the basis of formulae (4.8) as
1 —— .
2, = —o— | 1001~ K®@] dlyllo—to)lo—Fol] (0~
bl L

1 (c+&—220)(a—zo)v = N
s, 00| e oo |

4.12)
1 e ,
Ry = %f [®(c)+ KD(0)] d[(0 —zo)\/ [(6 — )0 —T)]— (06— 20)?]
- L

|
+— | ®lo)dK*o. 10)
2ni L

where
K*(a.19) = (046 —2z0) [ [(6—tolo — )] — 20 — =)

+ (0,_20)2
\/[(0'— tolo— ff))}

] —4(1+v) JS (Ve —toho—ig)]~(0—2z4)] sin a ds.
4]

The equalities (4.10) and (4.12) may be regarded as a system of integral equations for
the solution of the first and second fundamental problems of the theory of elasticity.

All the preceding formulae are also valid for elastic space, possessing an axisymmetric
cavity.

In order to satisfy the equality u = 0 when r = 0 it is necessary to assume that

,)—l—f [(¢+ 1)P(o)+P(o)]do = ¢, = 0. (4.13)
2ni ),

In the formulae (4.7) the beginning of integration becomes the point lying on axis z on top
of the cavity.
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If formula (4.8) 1s put down for any point lying below the cavity, we shall obtain
1 %+ 1
7% = ——;f ‘P(U)do='{——,—f®(o’)do‘ 414
)y oJy

where 2z Z§ 1s the resultant of the forces appiied to the cavity.
When solving boundary problems it is permissible to use integral equations (4.8) and
{4.10). The condition (4.14), considering (4.13) and (4.11), becomes transformed into
x+D 7T K-1{ — 3
73 = t - )J Do) do = ———J ®(o) do. (4.13)
7

i I

Py

This makes it obvious that 2nZ% corresponds to the action of balanced forces.

By representing the real and imaginary parts of the function by step lines, the height of
each step being unknown, one can, with the aid of the derived equations, reduce the
numerical solution of the first, second and mixed fundamental problems to the system of
linear algebraic equations [11].

5. EXAMPLES FOR THE SOLUTION OF PROBLEMS

3.1 Axisymmetric problems for an isotropic sphere andfor space with a spherical cavity

(a) For the case when the solid under consideration is restricted by a spherical surface.
the relations (4.5) make it possible to a solution of the problem in power series. The values
of the unknown analytical functions here may be represented by series of the tvpe

plo) = Z dyo*. Ylo) = Z bt (5.1

n= — X n= - ¥
Now let us substitute these series in the relations {4.5) and utilize formulae

"t o do

Jis N o= too— )]

= 2R*PAp) (3.2)

there ¢ = Re®, ¢, = Re'™ R is the radius of the sphere: 2 = cos x, P(f) the Legendre
polynomial). Then the integrals involved in the integral relations. will be expressed in
terms of Legendre polynomials.

Using the orthogonality property of the Legendre polynomials, we shall derive the
formulae for defining all the undetermined coefficients of a, and b,. The solutions of the
first and second fundamental problems of the theory of elasticity for a sphere and for
space with a spherical cavity were demonstrated in this manner. There were presented
solutions of the first and second as well as some mixed problems for a hollow sphere.

(b) Representations (2.5), (2.6) can serve as an aid in obtaining a solution in closed form
of the first and second fundamental problems of the theory of elasticity for a sphere and
for space with a spherical cavity {7]. We shall present here the solution of the first fun-
damental problem for a sphere.

Let us proceed from (4.5) and take into account that in our case t, = Re™, ¢ = Re¥,
o = Rcosa ry = Rsina ds = Rdo, where x and 3 are the angles measured off in the
meridional section of the sphere from axis z{~x < 3 < %). In the right member of the
equation (4.5) let us first integrate by parts and then differentiate in respect to x.
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Further we shall introduce the analytical functions F(_)and F,({) related to the functions
¢({) and Y({) by formulae

@'(0) = 2LF O+ (),

- , (5.3)
Y0 = 2FQ)+(F(O=-2RF ()= Fi(d)
and reduce the equalities (4.5) to the form
1 x e3i8"2 d9
= F )
& TJ_, 1(6)\/[2(C053-COS a)]
(5.4)

. 1re , o
prsina =~ f [4(1 +v)@'(0)+ 407 F"(0)— 0 F (o)~ F,(0)]/[2(cos § — cos a)] e**% d9.
Considering the properties of functions F,(o} and F(o) arising from the properties (2.4)
of functions ¢(o) and (o), we shall obtain
e3i.9/2 d9
V[2(cos $—cos a))’

b} a
p- =:ReJ- Fla) (5.5)
n 0

Now let us multiply this equation by sin « da/,/[2(cos a —cos y)] and integrate it within
the limits from 0 to y. Then we shall change the order of integration in the right member
and integrate with respect to a. Next let us differentiate both members with respect to y.
multiply them by 1/27i.dt/(t—{) and take an integral along the closed contour L. As a
result we shall obtain

; 1 (2Re ™2dr d -sinada

FO) == = ——,-—f P (5.6)
2riJ, & =0 dyJo \/[2(cosa—cos )]
From the equality (4.5) we shall find in an analogous manner that

. & ., 4 ke e A

F($) = PR V(’s}gklﬂ “Ek, v(s)gkz+l' (5.7)
Here k, and k- are the roots of the equations
k2+(1+2vk+1+v =10
¥ in?

V(§)=—11f 26_3,.},’22 .1 d P, sin‘a da
8mi ), dy|siny dy Jo /[2(cos x—cos 7)) .
(5.8}

5je-is d o2 d J‘ p: sin o« da dr
- dy dy Jo /[2(cosa—cos )] |} T~

The constant integrations which appear when computing undetermined integrals,
involved in formula (5.7). should be so selected that the function F({) would be analytical
in the region occupied by the meridional section of the body. For the case of space with
a spherical cavity the sign in the right member of the formulae (5.6)-(5.8) is replaced by its
opposite sign. The same takes place in front of p, and p..

In the case when displacements are given on the boundary of the sphere. the problem
is solved in an analogous manner [7].

For the case when in addition to surface loadings, the sphere or space with a spherical
cavity is submitted to the action of body forces, determined by the potential u(r, z), the



TIR A. Y. ALEXANDROV

deduced solutions retain their force. if instead of p, and p. we shall introduce p} and p?*
distinguished by some additions depending on U [8]

v
pr = Pr*"*l ‘1—_;“’1»3«.))

oo X2 dx r?
+ = ' (U (x. zp)+Re W¥(x, zy) —7'—7—“7}“
2l 0 O]r{)\,(ra—,\‘“) R

a xd. z R .
* [‘%J Im W, So>——:*}-—° (23 = RE=rd).

; M Y
L rov (rg—x-) | R

? L Uirg. 2ol ‘f Re WH(x. z—ar |20
*=p.+ (Fos Zo)— = X, o | =
p= =P Al—wy 07 2), ¢ O ri-x*|R

P4

¢ x dx o , .,
+l -] ImW*x, zp)————5 | = 25 = R —r3).
[2J.L m (x o)ro\’ (r()—x”):]R 0 rs)

In this case the solution of the second fundamental problem {8] is similar.

3.2 Axisymmetric problem for an isotropic ellipsoid of revolution and spuce with an ellipsoidul
cavity

In this case the analytical functions are sought for in the form of such series as

1= Y gk w(ly = Y b Kl (5.10)
k=0 k=0

For an internal problem K,({} = P,({) will be the Legendre functions of the first type: for
an external problem K () = Q) are the Legendre functions of the second type.

Elliptical coordinates z, = ¢ffand r, = | (¢° — 1}/(1 — f*) are introduced into the plane
of the meridional section of the body, wherein

"o Ky de
Tﬁ(‘”—v‘*';‘*‘ = niKk‘B)Pk(ﬁ}. (5.1
vin v L= oM 9]
In the procedure analogous to the one applied for solving sphere problems. the co-
efficients of series (5.10) are in a closed form.

3.3 Axisymmetric problem for a transversely-isotropic ellipsoid of revolution and spuce with
an ellipsoidal cavityt
Let the contour of the axial section L be the ellipse

gttt = 1.

Be it assumed that (—i/;[b/a]) < . In the equalities {3.6)+3.7) we shall introduce a
substitute t; = ay/(1+ 4}b*-a’r; and new parameters t,; = ay,/ (1 +4}b>/a*)ry;. Then we
shall obtain representations involving functions  {7;). analytical in the regions constrained
by confocal ellipses, extended along the axis = which correspond to the co-ordinate lines

t The results expounded in 3.3, 5.4 and 3 have been derived jointly with V. S. Volpert.
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¢ = a; = (14 4}[b*/a*])" ' of the elliptical system of co-ordinates
Zo = &P, ro = J(E=1)(1-$%.

In this context if ¢, belongs to the contour, then integration in the new representations is
conducted along the indicated co-ordinate lines.
The solution of boundary value problems is to be sought in the form

Vit) = Y AgKidt)). (5.12)
k=0

For cases with temperature and forces (or temperatures and displacements), given on
the contour, it is possible, taking into account (5.11), to derive coefficients 4,; in a closed
form.

For example, when temperature and components of displacement are given on the
surface of the ellipsoidal cavity, the coefficients A5, are defined from the recurrent relation

k(k+1) (k+2)(k+3) ;
1 7 K-y (2 3)A3k——‘2"1:+5_Kk+3(a3)A3,k+2
(k4 3) o (5.13)
2 a
= = f (B = ) T8(BIP,. 1 (B) .
~03 -1
Here
= 904 (8 4
Aso 2a3K asf BTYB (5.14)
Coefficients A,, and A4,, are defined by formulae
fz,“les(l)(az)“Pz#szk(az)
Ay = R k> 0)
T PLK @)K o) — Py fi KD K (@)
P, Kylay) fl#lek (2t1)
Ay = . k>0
= By 7oK o Koo~ Pa /i KD Ky 5
) . ) (5.15)
4. = uh o343 falor + 02 Pa/ 5 f300(x2) 403
1 %343 fxpzaz;-on(“z)_f2P1°‘1;~1Q0(°‘1)’
- ay/y %343 f1lor + P10/ f3Q0la1)Aos
Az

- w343 f1P2%243Q0(02) — fop 10141 Qolaty)
where

2k 1 atl
Hia = :’ J wolB)PB) dB — p3 A3 Kil23),
-1

&~

B2 =

+1
3 uo(B)PV(B) df — f3A3, K at3).
-1
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5.4 Three-dimensional problem for an isotropic solid of revolution

(a} In the case when the solid is spherical. the analytical functions may be represented
by series type [12]
Budle DD = 3 val (5.16)

0 ji=0

1

(pn(:) = z anj;j- ll’n(f) =

i=0 j

1

Let us substitute these series in (4.2) or in the associated equations for the second
fundamental problem, then tend ¢ towards the point of the contour ¢,. regard as the path
of integration the section i, —t, of the contour ({ = ¢) and compute the integrals involved
here in terms of formulae

ey

i"j! PPt )
PMp) forj>n=0
do {j+ n)' w f=n= 15.17)

0
ol )Vfuwo)w*fo)]

Lo
- t’T
il

0 for j < n

Here p = /(z? +r*). B = z/p: P{”(p) is the added Legendre function of the first type.

By utilizing the orthogonality of the Legendre functions one can define all the coethi-
cients of the series. The number of arbitrary coeflicients contained in the solution is sutlicient
for satisfying the boundary conditions.

(b) For an ellipsoid of revolution or space with an ellipsoidal cavity the solution may
be sought in the form

00 = Y ALK

i=ini -t

Unll) = Z [B KAO+11=26M4,,K 4 () (5.18)

Q) = Y CuKAO.
j=im~1
{For n = 0 summation begins from zero).
Here ¢ is the elliptical co-ordinate, characterizing the contour of the axial section of the
solid.
The coefficients of the series (5.18) for the case of the first and second fundamental
problems are in a closed form, if it is considered that

e
KiMg pin 4
Gy @R
. [—2 .
{ v KAOT, P for j = In|
[2] -
T e~ Lt = n n (5.19
rril"‘HJ,o JUt =t =) oQM(e) P M B) )
forj < |nl.

Here K{™(¢) will be the added Legendre function of the first P{"(¢) or second Q\"(¢) type
for the internal and external problems, respectively: 8 = 0 for the internal problem. and
0 = 1 for the external one. The function P; '"(f) is defined by the equation

1 1 i
prim f[ PBNABT  (cosn =
sin"n J, Jy



i

8]

9

[Se)

{10]

g
(12

(14]
s

g
LE-d

[16]

[18]

Three-dimensional problems of the theory of elasticity for solids of revolution 721

REFERENCES

N. L. MuskHELISHVILL, Some Fundamenial Problems of the Mathematical Theorv of Elasticity. 4th edition.
Publishing House of the Academy of Sciences of the USSR (1954},

A. Y. ALEKSANDROV. Some relations between the solutions of plane and axisymmetric problems of the
theory of elasticity and the solution of axisymmetric problems in terms of analytical functions. Rep. Acad.
Sci. USSR. 129, 734757 (1959).

i3] A. Y. ALEXSANDROV, Solution of axisymmetric problems of the theory of elasticity in terms of analytical

functions. Rep. Acad. Sci. USSR, 139. 337-340 (1961).

A. Y. ALEKSANDROV. On the solution of axisymmetric problems of the theory of elasticity by means of the
theory of functions of a complex variable. In Symposium: Some Problems of Mathematics and Mechanics,
Novosibirsk, pp. 42-46. Publishing House of the Siberian Branch of the Academy of Sciences of the USSR
(1961).

A.Y.ALEKSANDROV. The solution of axisymmetric problems of the theory of elasticity with the aid of relations
between axisymmetric and plane states. PMM 25, 912-920 (1961).

A. Y. ALEKSANDROV and V. S. VOLPERT, On the application of a certain method of solution of axisymmetric
problems of the theory of elasticity to the problem of a sphere and space with a spherical cavity. News Acad.
Sci. USSR, Dept. Tech. Sci. Mech. & Machine-Bldg., No. 6. 106-109 (1961}

A.Y.ALEKSANDROV and Y. I. SoLovyEv. One form of solution of three-dimensional axisymmetric probiems
of the theory of elasticity by means of functions of a2 complex variable and the solution of these problems
for a sphere. PMM 26, 138-145 (1962).

A. Y. ALEKSANDROV. On the solution of three-dimensional axisymmetric elastic probiems invoiving body
forces or temperature stresses and the solution of these problems for a sphere. News Acad. Sci. USSR.
Dept. Tech. Sci. Mech. & Machine-Bldg., No. 1 (1964).

A. Y. ALEksaNDRov and Y. I. SoLovyev, On generalizing the method of solving axisymmetric problems of
the theory of elasticity in terms of analytical functions for three-dimensional problems without axial sym-
metry. Rep. Acad. Sci. USSR 154, No. 2 (1964).

A. Y. ALEKSANDROV, Representation of components of three-dimensional axisymmetric states of a trans-
versal-isotopic body with the aid of the functions of a complex variable and contour integrals. News Acad.
Sci. USSR. Dept. Tech. Sci. Mech. & Machine-Bidg. No. 2 (1964).

A.Y. ALEXSANDROV and Y. I. SoLOVYEV, The solution of three-dimensional axisymmetric problems of the
theory of elasticity with the aid of contour integrals. PMM 28, 914-919 (1964).

A.Y. ALEKSANDROV and Y. 1. SoLovYEev, The application of analytical functions of a complex variable 1o
the solution of three-dimensional non-axisymmetric problems of the theory of elasticity for a solid of
revolution. News Acad. Sci. USSR, Mechanics No. 6 (1965).

1 A.Y.ALEKSANDROV, The solution of axisymmetric and some other three-dimensional problems of the theory

of elasticity in terms of analytical functions. Proc. Int. Symp. Applications of the Theory of Functions in
Continuum Mechanics, 1965.

1. N. SNEpDON and D. S. BErry. The classical theory of elasticity. Handb. Physik 6. Springer (1958).

S. G. LEKBNITSKY. The Theory of Elasticity of an Anisotropic Body. Moscow-Leningrad, Siate Technical
Publishing House {1950).

D. 1. SHERMAN. On the solution of a plane static problem of the theory of elasticity with displacements
given on the boundary. Rep. Acad. Sci. USSR 37. No. 9 (1940).

" D. 1. SHErRMAN, On the solution of a plane static problem of the theory of elasticity with given external forces.

Rep. Acad. Sci. USSR 38, No. 1 (1940}
A. 1. UzpaLEv. Plane problem of thermoelasticity for an anisotropic body. Engng Jnl Acad. Sci. USSR 11.
No. 1(1962).

{Received 18 September 1967)

Abcrpakt—IIpH NOMOWM CYNEPNOIMLNH YCTAHABIHBAIOTCA 3ABHCHMOCTH MEXIY MPOCTPAHCTBEHHBIMM
COCTORHUAMH C ONHOH CTOPOHDBI, H IEMEHTAPHBIMU BCTIOMOTaTEIbHbIME COCTOSHHAMY ([LIOCKHE COCTOSHHSR
M COCTOAHMS, COOTBETCTBYIOLUHE NETIAHALMH NIOCKMX CEYCHUA LIMAHHIPHYECKHX TEN), ¢ APYrO CTOPOHEL.

B vacTHOM ¢1ydae 370 3aBUCHMOCTH MEXKAY NPOCTPAHCTBCHHBIMH OCCCHMMETPHUCCKHMHE M THIOCKUME

COCTOSRHUAMU.

BriBeOEHHDBIC 3aBHCHMOCTH HCHOABL3YIOTCA A DPEWICHWA TIPOCTPAHCTBEHHBIX 3anay npv NOMOLUH

METONOB TEOPHH d))'HKUMﬁ KOMILIEKCHOIO TEPEMEHHOr0, NPHAOXEHHE KOTOPBLIX K NMAOCKHM 3ajavam
HIHPOKO H3IBECTHO.



