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SOLUTION OF THREE-DIMENSIONAL PROBLEMS OF THE
THEORY OF ELASTICITY FOR SOLIDS OF REVOLUTION BY

MEANS OF ANALYTICAL FUNCTIONS

A. Y. ALEXANDROV

Novosibirsk Institute of Engineers of Railway Transportation

Abstract-By means of superposition relations are established between space states on the one hand. and elemen­
tary auxiliary states. (plane states and states corresponding to the deplanation of plane sections of cylindrical
bodies). on the other hand. In the particular case it is the relations between axisymmetric space and plane states.

The derived relations are employed for the solution of spatial problems by means of the apparatus of the
theory of analytical functions of a complex variable. whose application to plane problems is widely known [IJ.

1. RELATIONS BETWEEN SPACE STATES AND ELEMENTARY STATES
CONNECfED WITH THEM

1.1 Space state

BE IT supposed that the elastic cylinder with its generators parallel to the axis y, and with
its cross-section symmetrical in relation to the axis:, is in a state formed by the superposition
of the plane strain (T): = TX ) = r = 0) and the state corresponding to the deplanation of
the cross-sections of the cylinder in the direction of the axis y

lIT, = IT x = IT: = Tx: = I\' = U = 0). Fig. l.

The states of stress and strain of the cylinder we shall consider as being dependent on the
parameter i., whose value can be changed. The cylinder may be isotropic or transversely­
isotropic with an axis of elastic symmetry:. homogeneous or heterogeneous with elastic
parameters dependent only on the coordinate :.

FIG.
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By rotating the contour of the cross-section of the cylinder III relation to the ax\., :.
let us excise from the cylinder a solid of revolution. It should be noted that such an operatIOn
is possible not for Just any form of the cross-section. Therefore. let us temporarily introduce
the restrictions making this operation possible. assuming that the function xl:) ~ 1"1: I

for half the contour, lying to one side of the axis :. is a single-valued function.
The surface of the excised solid of revolution will fall under the action of certain forces

If we were now to displace these forces along the surface of the solid by revolving around
the axis :. the internal stress and displacement will follow the forces without changmg lr1

value. provided the parameter i. does not change.
In the excised solid let us pass from the components of stress and displacement III the

Cartesian coordinates x. y. : to the components in the cylindrical coordinates 1". IJ. : and
superimpose these components during their revolution in relation to the solid around the
axis :. with simultaneous variations of parameter i" We shall consider this parameter
to be equal to the angle of rotation I'. Rotating through the angle 21t we shall get a three­
dimensional state of the solid of revolution whose components are defined by integration
[9. 12.13J

rJ, = r-rr':a. cos 21,'-+-0I-'-a" sin21,'+IJ)-1-~n' sin2(,,·Tt))jd /'.
_il

(J8=' [a,:sinel,'+IJ\+O'y cos 2 (",'+lJl-r,y,sin2("/+lJlJd,':
_0

T," = rerr
[-±(O', -+-O'\,,)sin 2(','+H)+tx }',' cos 2(/'+0)] d/'.

... I)

'or - I,e. [t oX ! COS(·...... /:;J\-I-T oy sinl/'+HI] d·...
';0

.. 21'1'

'0" = I -T ox sinli'+IJ)-,-tO\ cOSii'+O)] d''':
"':)

II' = I II' di',
.'Ii

1I = I' 2" [" cosl'" .... 11\-1- r sinli' -'- HI] d·...
.J 1)

r = rerr. -L/ sinl"+{f)+r COS(",O)l d",',I - '. '';
- <1

i I.l i

i 121

Here (Jot:. r. 0). (Jr' T,", 11'(1". Ii. :1. [/. t' are stresses and displacements (axiaL radiaL tangen­
tial) of the three-dimensional state: lI'(x. :'I'\' 1I • t· --will be the displacements of the
auxiliarv states in the direction of axes :. x. \': the stresses (J, Ix.:. '.' I. 0', • (J .' ~ corres­
pond to'plane strain. Tn' Ix.:. I') and T \:' co~respond to deplanatio~. (J,' :~ ~'((J: x:.- (J, I for
the isotropic and O'y = I',vax + 1',) E" E:)0' 0 for the transversely-isotropic body. \'. \'",
I'x: are Poisson' s ratio: E,. Eo are moduli of e!astici ty : x = I" cOSI;' , II I,
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Let us now establish the relations between the three-dimensional and auxiliary states
by means of another superposition. Let us consider a space with an axisymmetric cavity
in a general state of stress (Fig. 2). By displacing the contour of the meridional section of
the cavity along the axis I] from '7 = - x to I] = x let us excise a cylindrical cavity*
(axis '7 lies in the plane xy at the angle )' to axis yl. Be it noted that such an operation is pos­
sible not just with any form of the contour of the meridional section of the cavity and there­
fore we shall temporarily introduce the same restrictions as for the contour of the cross­
section of the cylinder. For a space with such an excised cylindrical cavity let us pass from
stress and displacement components of three-dimensional states in cylindrical co-ordinates
r. B. = to components in Cartesian co-ordinates '7. ~. =and superimpose the stress and
displacement components by moving them in relation to space along the axis I] from
I} = - X to '7 = x. As a result of such superposition we shall derive a state of stress and
strain of space formed by the superposition of two states-the plane strain

(,~= = '¢~ = r~ = 01

and the state of deplanation la¢ = a~ = a= = T.;= = W = u.; = 0). The components of this
state will depend on the parameter i' and are defined by the expressions [9J. [12J. [13].

a~ i = J:", [a, sin 2(0 - i'l + a8 cos 2(8 - j') + T,8 sin 2(0 - i')J dl]:

= J:", [t(a, - ( 8 ) sin 2(8 - ','l+ ',8 cos 2(8 - i'iJ dl).

= J:", ['=rcos(8-i'I-'=8sin(8-}'iJdI7.

= r'" [,=,sin(8-i'l+'=8cos(8-i')Jdl):
... -oc

Wi' = J:,. wdl].

= f:", [u cosW- ,/)-t'Sin(8- i'lJ d'7.

r~ = J:", [usin(B-i'l+l'Cos(8-i'l]dlJ.

(1.3 )

(1.4)

Here a=II(~' z, j'~ a~i:' a~il' ';=11. "'I' U;li correspond to plane strain. and '~~II(¢. =. yl. '~=jl'
r~l: signifies deplanation. For an isotropic body a~H = v(a=l, +a¢li l, for a transversely-
isotropic body a~11 = v¢~a~11 +v.;=(Ex/E=)a=li'

• This cavity is shown by a straight dotted line in the bottom view of Fig. 2.
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1.2 The axisymmetric state

Let us derive the relations between the components of a three-dimensional axisymmetrIc
and auxiliary plane state as a particular case from the formulae (1.1), (1,2), or by means of
superposition analogous to the one described above. In this case the problem is simplified
the components of the state of deplanation of a cylinder should be taken as equal to zero.
whereas the parameter i. should not be introduced into the expressions of the plane state
components Ithat is. we shall not alter the plane state during the rotation of the cylinder!.
It will be assumed that the plane state of the cylinder is symmetrical in relation to plane v:
and we shall derive an axisymmetric state by means of superposition while rotating the
plane state through the angle IT (and not 2IT). Thus, we shall arrive at [2-5, 13J

O'r= "'IO'x coscO+O',. sinctJ)dU.
• 'J

(f" = C10'" ' coscfl -+- 0' 'I sinctJ) dUo
... 0

1I = r~ 1I cos () dO.
... i)

": = r' 0': dO.. ()

:r: = r'T,: cos tJ de:
... ()

II' = r' \1', dU,
.1)

I 1,51

I 1.61

Through the action of the plane system of body forces Y lX.:) and Z:(x.:) on the cylin­
der we shall derive in the solid of revolution an axisymmetric system of body forces [5J
Rlr.:) and Z(r.:1

R = r' X cos Hdt).. ()

Z = t~ Z dO. \] 7)

We shall now obtain the relations between the axisymmetric and auxiliary plane states
by means of superposition analogous to the one described above, [or directly from the
formulae (1.3). (1..+)]. Inasmuch as in this case the angle '/ does nor-affect the componen ts
of the plane state, obtained by superposition, we shall presume that~· = 0, that is. introduce
integration with respect to y from y = - X. to Y = x.. (Fig. 3 l. Herein, the components
representing deplanation. are con verted to zero.
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As a result, we shall find [2-5, 13J

(I,. = J:" (ursin
2
8+aocos

2
8ldy.

U i = I: 7 U cos 8 d .1',

When body forces are involved

X II = I: x X cos () d.\'.

v: = jOJ a: dy.
-x

!,~:, = J:, !r:codJdy.

II' = I:f "d.\',

z = IX Z dy.
- ,

(1.8)

(1.9)

(1.10)

The derived relations between the plane and axisymmetric state components shall be
regarded as integral equations with respect to the components of the axisymmetric state,
Let us reduce these equations to the Abel-type equations and solve them. As a result we shall
obtain

1 JOY fa:, dx
-- -~-,"'l .,.

7r r ex '\' (..- - r-) (1.11 )
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II = -
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,. I ·x r (\' ~ ( \ Ie - r-I. \. \

I
. ('R X dx 1

, ,'z J.\
R = - I z = - - ,
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1i. IX r 1.\2 - r 2 ) :r , \ 1\2 _..
• c \. • c '\

I! ] ~!
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2. REPRESENTATIONS OF THREE-DIMENSIONAL STATE COMPONENTS
OF A HOMOGENEOUS ISOTROPIC BODY IN TERMS OF ANALYTICAL

FUNCTIONS OF A COMPLEX VARIABLE OR CAUCHY-TYPE I;\ITEGRALS

2.1 Spuct' state

In the relations (i.i J. (1.2) let us pass from integration with respecI (0 (} to integration
with respect to x. By utilizing the Kolosov·'vluskhelishvili formulae and the solution 1)1'

the torsion problem. let us represent the elementary state components in terms offunction,
Ipl;. ~'I. !p(~. ~,) and (D(;. ;'1 of a complex variable: = :: 1- ix. also dependent on the parameter
','. Let us presume that as related to ;' these functions may be expanded in trigonometrIc
serIes

where (Pn(~)' t/Jn(~) and <1>ni~) a~e functions analytical in the region occupied by the meridional

section of the body satisfying the conditions ipnl;) = ('-I )"(P-n(~)' I/1 nl;) = (-i )n'b."I=I.
IDnl;) = (- I )n<1>_n(~I.

By applying the properties of analytical functions. let us make some transformations
and obtain [9. 12, 13J

(:-::) J:
-rl/J.' 1:)-i<DTI1T _. ,---- ~'.----'-----'-n\ . " ':" ,,- _ ' r. " __ ~-

, rr ." ck-riL-tIJ
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( ~-::;) d~xTn -'-· ' •
ri .... ![(~-t)(~-flJ

( ~-::;) d~+ i<1>n(~ I] I,; + t -'-,- .' i[(' ' (. -;'
n .... s-t) ~-t)J
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(2.3)

Here t = ::; + ir. % = 3 - 4\'. II will be Lame's constant. T,,[(~ - ::;).TiJ is Chebyshev's poly­
nomial of the first type (L n = 7;,1. For definiteness let us select one of the branches of the
root .... [(~ - t)(~ - t)].

Integration from f to t may be conducted along any line lying on the meridional section
of the body, It follows from this that the restrictions superimposed in 1.1 on the contour
of this section may be removed [7J.

The analytical functions involved in (2.2). (2.3) may be represented by Cauchy-type
integrals. By c'hanging the order of integration and computing the internal integrals. it
becomes possible to express the components of the three-dimensional state not in terms of
analytical functions but by the density of the Cauchy-type integrals [11].

2.2 The axisymmetric state

The representations of the axisymmetric state components may be derived from the
expressions (2.21. (2.3) or by the procedure analogous to the one described above. In the
last case let us introduce into the relations (1.5 I. 11.6) the expressions of the plane state
components in terms of two analytical functions cp(~) and 1jI(~). We shall use for this purpose
the Kolosov-Muskhelishvili formulae with terms introduced by Stevenson. that would
account for body forces. Let us take into consideration that because of the symmetry of
the plane state in relation to the axis ;:. functions <p and VI possess the property of parity

cp(~) = <p(~I. t/J(~) = 1jI(~). (2,4)

In the expressions (1.5), (1.6) let us pass from integration with respect to fJ to integration
with respect to x and after the transformation obtain [2-5. I3J

{
I c r dx }+ -2-1-' U(r.;:)+, I Re W*(x. z) / 2_ .2) .

( \ ) _ ~ L" .... (r x
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(j' [o2x~-r~ x~-r':'l d.Y
~- L' ,Ix. :)--,--_... + 2 Re ~V*(x, :I-,----~,--.-,

-+ L, r r- J"lr--cl

T -r= -

Li

( " I" I X J.Y 1- < - ~Re VI! J(y. : IJ-, ,
( -llir - Ir--x-,(

,aiL, \,.!

1 1'1 . _ ., ,. ~ _ ~ - d;
It' -- : %COL 1- (..: - ~)cp L I-I/J(~) i-~--.-~---~-~

2}.l1!i.,c, - .. '"Lk-t\(,-t\,

Here c = (I - 2\,)/( 1- n Llr.:1 will be the body force potentials.

''::6,

ICt ,'I' = Rlr. :1.

~ -i._ I

\s in the preceding case integration from i to l may be performed along any line IYlllg
in the meridional section of the body. As to the integrals shown in braces land relative to

the body forces) we shall have L.o -'. dx = f",. dx. that is, integration with respect to .\
along Lo denotes integration along a straight line passing withm the body. between POIl1(~

I-I'. :1 and II', :l.
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On the axis of symmetry we shall have

a: = 2cp'(z)- zcp"(z)-l/!'(z~

ao = a, = (1 +2vICP'(z)+t[zcp"(z)+l//(Z)j,

J ,
W = ,[xcp(z)-zCP(Z)-l/!(:)), u = O.

~/1
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12.8)

(2.9)

(2.10)

Representations of axisymmetric state components may be derived also by another
method.

Let us consider the derivatives of stress and displacement of a plane state with respect
to x, involved in (1.11), (1.12) as stress and displacement ofa certain elastic antisymmetric
plane state as related to the plane yz. By using the Kolosov-Muskhelishvili formulae
involving terms reflecting the presence of body forces, and by making corresponding
transformations, we shall derive expressions within an accuracy of a constant factor
matching the expressions (2.5H2.6), if JLo ... dx implies here J=~... dx +J~ ... dx (that is.

integration with respect to x along L o, as earlier, means integration along a straight line.
passing within the body-in the given case from point (- oc. z) to point (- r, z) and from
point (r. z) to point (oc, z).

One can readily see that representations (2.5~ (2.6) are of a general character and may
also be derived with the aid of a general representation of the solution of the equations of
the theory of elasticity in the form of P. F. Papkovich-H. Neuber for the case of axial
symmetry. For this purpose the functions involved in P. F. Papkovich's formula should
be presented as integrals having the structure of separate components contained in the
expressions (2.5H2.6) [7].

We shall represent the functions cp(n and l/!(n involved in the expressions (2.5H2.6).
by Cauchy-type integrals. Let us change the order of integration. compute the internal
integrals and for the case when body forces are absent derive the following representations
of stress and transposition [11 ]

a. = __I r [-2<1>'(a)+(2:-a)<l>"(a)+'I-"(a)J I[ da -r
• 2niJL ..,/(a-t)(a-t)

4v f da Co 1ao = - <I>'(a} _ +---.-0
2ni L J[(a-t)(a-t)J r 2nw

i[m( ('" m'() ill· j (a-z)da
x X'V a)+ ~z-a)'V a + T (a) '[I )( . J'

L Y a-t a-t)

4(1 + v) f.' daa,=--- <I> (a) a.-ao.
2ni L ~[(a- t)(a- f)j .

1 f ", (a-z)da.
I,: = --. [(2:-a)<I> (a) + 'I-' (a)J 1[( .)J'

2mr L v' a-t)(a-t

1 f ' da
W = --. [-x<l>(a)+ (2z-a)<I> (a)+'I-'(a)J I[ )( ')J'

477:1/1 L V (a-t a-t

1 f . (a-z)da Co
u = --.- [x<l>(a)+(2z-a)<l>la)+'I-'(a)J 1[( )( .).+-.

477:1W L \,1 a-t a-t J r

(2.11)
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Here a = r + i: is the fixed point of the contour, functions <DIal and tt'(a) depict the density
of the Cauchy-type integrals. that is. continuous functions of the points of contour L.
possessing corresponding derivatives.

I .
Co = ,-.1 [(x+ 1)<D(a)+tt'(a)] dO".

_ltl.t

The branch line is to be drawn between points t and t within the region.

12.121

3. REPRESENTATIONS OF THREE-DIMENSIONAL STATE COMPONENTS
OF A HOMOGENEOUS TRANSVERSELY-ISOTROPIC BODY IN TERMS OF

ANALYTICAL FUNCTIONS OR CAUCHY-TYPE INTEGRALS

3.1 Three-dimensional state when heating is involved

Representations analogous to (2.2H2.3) may be derived also for a transversely-isotropic
solid of revolution. Let us introduce into the equation 11.1 H 1.2) representations of com­
ponents in terms of analytical functions (D ll~ d and (p :(~ :), describing plane strain (15J,
<O ..(~ .. ), describing the deplanation of a section and <PJ(~3)' describing the stationary tem­
perature field [18]. Here ;j = : + i. j .\ (whenj = 1,2. 3. -H is the generalized complex variable.

Parameters i. 1, i'2 are the non-conjugate roots of the characteristic equation

(I \.2 Ex) ... , [E: ..", ('I' \' lJ/·2. (I \,2 )E: -I)
- x: Eo I. '" c--. - - x: T ·\Y • '7' - xv E - ..

_ x_ x

Gn • Gx : will be the moduli of shear, K[ and K: the coefficients of thermal conductivity
in the plane of isotropy and along the normal to it.

As a result of transformations one can obtain stress and displacement representations
when steady heating is involved. For displacement in case of pure imaginary ;'1 and,. 2

they acquire the form

Here ~i = :+i'j-"(' t j = :~i1: <PIn' <P2n' <P ..n. <P3n are analytical functions in the domains
which are in affine correspondence to the region occupied by the axial section of the body
and satisfies the conditions
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PI-3 and 11-4 are yielded by the formulae

711

(3.3)

Here IX., and IX, are the coefficients of linear expansion of material in the plane of isotropy
and in a direction parallel to the axis of rotation. In this context functions q>3n(~3) are con­
nected with the temperature of the body T*(r, z, 8) by the relation

(3.4)

3.2 Axisymmetric state when heating is involved

From the expressions (3.2) and the corresponding expressions of stress which are not
cited here, or by a method analogous to the one described previously and connected with
the application of formulae (1.11 (1.2) as well as with the representations of a plane state in
terms of analytical functions, we shall derive representations of axisymmetric state com­
ponents by contour integrals, containing Cauchy-type integral densities <1>(0'). For the
case of pure imaginary non-multiple roots of equations (3.1) we shall find that

(3.5)

(3.61
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Let us note that the plane and axisymmetric temperature fields T*Lx.':1 and T:+;(r.': I

may be connected by the operators

" dx
T6 = 2J T"j---,--,.

o ',;, (r~ - x')

* _ I'" * dxTo - -- T.; ,·.2 2'
IT., ",(.x-rl

matching the two different types of superpositions described above. The steady-state
temperature T~ is placed by operators (3.9) in accordance with the steady-state temperature

T6·
If the density of the Cauchy-type integrals W) in formulae (3.5), (3.6) were to be replaced

by functions l.{J j' analytic in the regions obtained by means of affine transformations
(1) = :: + ..1./ of the region occupied by the axial section of the body, then some components
in the right members of (3.6H3.8) will be converted to zero. whereas the integrals along
the contour may be replaced by doubled integrals from i j to tj .

By applying superposition as described by the expressions (1.11), (LI2l, representations
are obtained which correspond to (J.SH3.7) within an accuracy of a constant factor.

4. EQUATIONS FOR FUNDAMENTAL BOUNDARY-VALUE PROBLEMS

-1-.1 Three-dimensional problems

In the first fundamental problem the boundary conditions have the form

po = <1 0 cos 'X, -+ rro sin x.

Pr-+ipO = !(<1r+<1o)sin'X,+±(O"r-<1o+2i'ro)sin'X,+lrro-t-iroo)cos'X,.
i-1-.11

Here Pro Po and Po are the components of the external loading vector. 'X, is the angle of
obliquity of the contour normal of the meridional section to the axis ::.

In the representations (2.2) let t and ( tend to the contour points to = .:0 ..... iro and
<1 = ::+ iI', respectively. Be it supposed that the path of integration is the section from i o
to to of the contour. Let us introduce (2.2) into H.l) and, considering that cos 'X = drds.
sin x = - d.:/ds. where ds is the arc differential of the contour. derive for the case of a
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homogeneous isotropic body

T. (
a-zo) ro+ldt . n-l d

X +1 -- +ro -
n roi J[(a-to)(a-io)] ds

713

T.(a-zo) ronda 1 d
X n --.- _ +.....-+'-

rol .,J[(a-to)(a-to)] ro ·ds

(
a-zo\ '0+2 da }

X T,,+2 -- .
roi ) J[(a-to)(a-io)]

Be it noted that if the forces on the surface of the body may be presented in the form

where

ex

p: = I (n(ZO' ro)einfi,
n== - oc

J.

p,+iP8= I dn(zo,ro)ein8,
n;:;: - ,x.

(4.3)

then by comparing (4.3) and (4.2) we shall derive a system of equations for defining the
unknown analytical functions..

The formulae (2.3) make it possible to directly write down the boundary conditions
for the case of the second fundamental problem.

4.2 Axisymmetric problems
The boundary conditions for the fitst fundamental problem have the form

P, = a, sin (X + 'r: cos rx, (4.4)
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Supposing that in (4.2) n = 0 and <1>n = O. we shall obtain

I d f'0. (a -.: ) da
__. _ [41(a)-(2zo -a)q>'(a)-IjJ(a)]-j-_' 0 ••

n:rol ds io "Lla-to)(a-to)]

- ~j~ {'o [(1 + 4v)41(a) + (2':0 - a)41(al + I/Ila)]
_m Ids Jin

14.51
da 1 d j,eo_ .." ' _

x --!-,-,---.--2 -d LlI-4v)q>(a)~(.;.':0-a)41(a)+ljJlalJ
'V(a-co)(a-to) ro S in

[2(a - ZO)l + r6J da
X . ."I [(a - to)(a - to)J

When utilizing the representations in terms of Cauchy-type integrals, the equation for
the first fundamental problem may be put down as [I1J

1 d J" . (a-zo)da
P: = -"'-'-d- [-<1>(a)+(2': 0 -a)<1>'(a)+qJ(a)] [ ) . )"

_mro s L v' (a-to (a-co J
H.6)

1 dJ'- ,n' HJ(Jf[' -] (a-':o)l JPr = -'-1 -d L<1>(al+(2zo -a)-v(a)+ TO') \Ii (O'-to)(O'-to) + _ . ;
2mro s L L "LlO'-to)(O'-Co)J

Sin::tJ" ' , - (O'-':oldO' Co·
X dO'-~ L(3+4v)<1>(O')+(2':0-O')<1>(O')+qJ(O')j f[' - J-2: sm ::t.

_rrzro L \I (O'-to)(O'-to) r

Let us denote

Zo = r
s

p=r ds.
~o

Ro = J's Prr1 ds + j' Zo sin ::t ds.
o II 0

I·U)

14.8)

here the integration is conducted along the are, from the point lying on the axis of symmetry.
Then equality (4.61 will be transformed into the form

I J [0'-':0 JZo = -. [-<1>(O')+12':o -O')<1>'(O')+qJ(O'l]r - J-1 dO'.
2m L 'V Ja-to)(O'-to) •

1 • [Ro = -.J ~<1>(O')+12zo-O')<1>'(O')+qJ(O')J ,,[(I1-to)(l1-tol]-2(11-':0)
2m L

(11-':0)2 Jd+ I 11
\i [(0"- co)(11 - to)]

4l1+V)f {fS[ 0"-':0 J' }- --- <1>(0') , - 1 sm::t ds dO".
2n:i L 0 'Vi[(O'-tO)(O'-to)] •

Inasmuch as now the real and imaginary parts of the functions <1> and qJ are not inter­
related. some arbitrariness comes into play.

Let us assume that, as D. 1. Sherman has done [16, i 7] in reference to a plane problem
that

qJ(~) = ..,K r <1>(cr)~(j _~ rB<1>'((j),da .
.;.m JL (J - s _m • L (J - "
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where K = 1 for the case of the first fundamental problem, K = - x in the second one.
Then from expressions (2.10), (2.11) one can obtain

". = -4
1

. r [x¢l(a)-K¢l(alJ d In[.j[(a-to)(a-io)]+(a-zo)]
J17!l JL

~_1 r ¢la) d [ a+<1-2zo ]
4J17ti JL ( v[(a - to)(a - tolJ '

u = --41. r [x¢l(a)+K¢l(a)Jd[.)[(a-to)(a-to)]-(a-zo)J
7tJ1"0 JL

1 I m ld[(a+<1-2ZoHa- zol - ').,. ]--- w(a / (a+a--~ol .
4J17tiro L "\i [(a-to)(a-io)J

Here it is taken into account that Co acquires the form

1 J -Co = ;;-: [(x + 1)<1>(a l+ (K - 1)<1>(a )Jda.
_7tl L

(4.10)

(4.11)

The expressions for forces should be written down on the basis of formulae (4.8) as

(4.121

+_1_. r ¢l(a) dK*(a. to)
2m JL

where

K*(a, to) = (a+<1-2zo)[.)[(a-to)(a-io)J-2(a-zo)

+ I[ (a-zo)2 _ J]-40 +V)js[.,J[(a-to)(a-io)]-(a-Zo)]Sinrxds.
'\ (a- to)(a- to) 0

The equalities (4.10) and (4.12) may be regarded as a system of integral equations for
the solution of the first and second fundamental problems of the theory of elasticit)'.

All the preceding formulae are also valid for elastic space, possessing an axisymmetric
cavity.

In order to satisfy the equality u = 0 when r = 0 it is necessary to assume that

..j-. r [Ix + I)¢l(a)+ 'I'(a)J da = Co = O.
_7!l JL

(4.13)

In the formulae (4.7) the beginning of integration becomes the point lying on axis z on top
of the cavity.
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If formula (4.8) is put down for any point lying below the cavity, we shall obtain

1 i ;.;:+ 1iZ6 = - -, t¥(a) da = -.- <1>(a) da
m L m l.

14141

\,+.1:' )

where 2rrZ(j is the resultant of the forces applied to the cavity,
When solving boundary problems it is permissible to use integral equations (4.i'\ I and

(4.10). The condition (4.14), considering (4.13) and (4.11), becomes transformed into
Ix + 1) j' K - 1 .~ _.Z6 = -'-,- <I>(a)da = ---.- J <I>(a)da.

m m I

This makes it obvious that 2rrZ;j corresponds to the action of balanced forces.
By representing the real and imaginary parts of the function by step lines, the height of

each step being unknown, one can, with the aid of the derived equations, reduce the
numerical solution of the first, second and mixed fundamental problems to the system of
linear algebraic equations [II].

5, EXAMPLES FOR THE SOLUTION OF PROBLEMS

51 Axisymmetric problems for an isotropic sphere andfor space with a spherical cavity
la) For the case when the solid under consideration is restricted by a spherical surface.

the relations (4.5) make it possible to a solution of the problem in power series. The values
of the unknown analytical functions here may be represented by series of the type

(~a) = L. dkak
•

n= - x: n~ - x
15.ll

Now let us substitute these series in the relations (4.5) and utilize formulae

\5.2)

(here (J = Rei:'. to = Ret>. R is the radius of the sphere: fJ = cos :I., Pk lj3) the Legendre
polynomial). Then the integrals involved in the integral relations, will be expressed In

terms of Legendre polynomials.
Using the orthogonality property of the Legendre polynomials. we shall derive the

formulae for defining all the undetermined coefficients of Uk and bk . The solutions of the
first and second fundamental problems of the theory of elasticity for a sphere and for
space with a spherical cavity were demonstrated in this manner. There were presented
solutions of the first and second as well as some mixed problems for a hollow sphere.

(b) Representations (2.5), (2.6) can serve as an aid in obtaining a solution in closed form
of the first and second fundamental problems of the theory of elasticity for a sphere and
for space with a spherical cavity [7J. We shall present here the solution of the first fun­
damental problem for a sphere.

Let us proceed from (4.5) and take into account that in our case to = R ei~, a = R e.:J,
:'0 = R COS:l.. ro = R sin :x, ds = R da:, where :I. and ,f) are the angles measured off in the
meridional section of the sphere from axis z( -:I. S; [) :::;:1.). In the right member of the
equation (4.5) let us first integrate by parts and then differentiate in respect to :I..
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(5.3)

Further we shall introduce the analytical functions F(~) and F l (~) related to the functions
<pro and l/J(() by formulae

<p'(') = 2(F'(() + F((l,

l/J'(~) = 2F(()+'F'(()-2R 2 F"(,)-Fd')

and reduce the equalities (4.5) to the form

If' e3illi2 d.9
p=- Fl(a)/ .9 ,.= n _, ,,[2(cos -cos(X)J

(5.4)

If'p, sin (X = - [4(l + v)<p'(a) +4a2F"(a) - aF'l (a) - Fda)JJ[2(cos.9 - cos (Xl] e3i11!2 d.9.
n _,

Considering the properties of functions Fl(a) and F(a) arising from the properties (2.4)
of functions <p(a) and l/J(a), we shall obtain

:2 I" e3i.~/2 d9
p. = - Re Fila) . (5.5}
- n ° J[2(cos9-cos(X)J

Now let us multiply this equation by sin (X d(X/J[2(cos (X-cos y)J and integrate it within
the limits from 0 to y. Then we shall change the order of integration in the right member
and integrate with respect to (x. Next let us differentiate both members with respect to y.
multiply them by 1/2ni. dr/(r - 0 and take an integral along the closed contour L. As a
result we shaH obtain

v I f 2R e- iJ'!2dr d fl p:sin (Xd (X
F(~)=- - -
I. 2ni L ( r-( d}' o,,/[2(cosex-cosi'j]

From the equality (4.5) we shaH find in an amilogous manner that

(5.6)

(5.7)

(5.8)

Here k l and k2 are the roots of the equations

k2 + (l +2vlk + I + \' = 0

V(O = _1_ f {:2 e - 3i;,,2 ~[_.1_ ~ Ii P, sin
2

(X d(X ]
8ni L di' sm i' di' ° ~[2(cos a-cos}')]

'). -i- d [ -;-'/2 d Ii p: sin (X da J} dr
- ~I e 'di' e ' di' ° ,,/[2(cos ex - cos i')J r - (

The constant integrations which appear when computing undetermined integrals,
involved in formula (5.7). should be so selected that the function F(,) would be analytical
in the region occupied by the meridional section of the body, For the case of space with
a spherical cavity the sign in the right member of the formulae (5.6H5.8) is replaced by its
opposite sign. The same takes place in front of p, and P:.

In the case when displacements are given on the boundary of the sphere. the problem
is solved in an analogous manner [7].

For the case when in addition to surface loadings, the sphere or space with a spherical
cavity is submitted to the action of body forces, determined by the potential u(r. z), the
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deduced solutions retain their force. if instead of Pr and P: we shall mtroduce P: and p;
distinguished by some additions depending on U [8J

I vP: = Pr'hl '1--L1fo. Zo)
l -v

c /' c x
2

dx } fO+::; LU (x. zo)+Re W*(x. Zo)J 2 (2 .2 'R-
-.L f o" fo-X )

I c J' xdx J:::o
T L::; 1m W*(x. zo) / 2 2.· ·R-

~ L fo"dfo-X )

[ I. C f dx J:::o
p~ = P: + -"'-I-- L;(fo• :::0)-::; Re W*(x. :::0) 2 .2-R

~( -v) - L "fO-X

[
cf xdx Jro+::; 1m W*(x. :::0) . ( 1 _ 1 -R
- L f O" r o X)

In this case the solution of the second fundamental problem [8J IS similar.

15.9)

5.2 Axisymmetric problem for an isotropic ellipsoid of revolutiO/l and space with an ellipsoidal
cavity

In this case the analytical functions are sought for in the form of such series as

<pK) = L akKk(~)'
k= 0

ip(~) = L bkKd~)·
k=O

15.tO)

For an internal problem Kk(~) = Pk(~) will be the Legendre functions of the first type: for
an external problem Kk(() = Qk(() are the Legendre functions of the second type.

Elliptical coordinates =0 = f.{3 and ro = v (f.2 - 1)'\j( 1- /32) are introduced into the plane
of the meridional section of the body. wherein

15.111

In the procedure analogous to the one applied for solving sphere problems. the co­
efficients of series (5.10) are in a closed form.

5.3 Axisymmetric problem for a transversely-isotropic ellipsoid or revolwio/l and space with
an ellipsoidal cavitvt

Let the contour of the axial section L be the ellipse

Be it assumed that (- i;Jb!aJ) < 1. In the equalities (3.6)-(3.7) we shall introduce a
substitute t j = a~(1 +;,fb"'(2)'j and new parameters tOj = a'\j(1 +;.fb"'a2)'Oj' Then we
shall obtain representations involving functions i/J/t), analytical in the regions constrained
by confocal ellipses, extended along the axis z which correspond to the co-ordinate lines

t The results expounded in 53.5,4 and 3 have been derived jointly with Y. S. Yolpert.
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f, = rx j = (1 + )';[b2/a2J)- 1/2 of the elliptical system of co-ordinates

In this context if to belongs to the contour, then integration in the new representations is
conducted along the indicated co-ordinate lines.

The solution of boundary value problems is to be sought in the form

ex:

I/tirj) = L AkjKk(rj)'
k=O

(5.12)

For cases with temperature and forces (or temperatures and displacements), given on
the contour, it is possible, taking into account (5.11), to derive coefficients A kj in a closed
form.

For example, when temperature and components of displacement are given on the
surface of the ellipsoidal cavity, the coefficients A 3k are defined from the recurrent relation

k(k+l) (k+2)(k+3)
2k+l Kk-t(CL3)A3k 2k+5 Kk+3(rx 3)A3,k+ 2

= (2k ~ 3)qoa J+ t (/32 - rx~)TW3)Pk+ d(3) d{3.
• rx 3 - t

(5.13)

Here

q a J+t
2 ; () (3T6({3) d{3.

rx3 t rx3 - t
(5.14)

Coefficients A 1k and A 2k are defined by formulae

(5.15)

(k > 0)

(k > 0)
f2J.lkt K Pl( rx2)- P2J.lk2 K k( rx 2)

A 1k = Pd2 K P )( rx 2 )Kk(rxt) - Pdt Kit )(rx t )Kk(rx 2)'

Pt J.lk2 K k(rx tl- ftJ.lkt Kpl(rxd

rx2)'2 CL3)·3ftJ.l01 +Pt rx t/,d3QO(rxt!A03
A

20 = rx3/'3 fIP 2rY.2)'2QO( rx 2) - f2PI rx t )'1 Qo(rxtl

where
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5.4 Three-dimensional problem for an isotropic solid of rerolution

la) In the case when the solid is spherical. the analytical functions may be represented
by series type [12J

'.
l/Jn(() = I fJnj~j.

j; 0
<1>n(':) = L: ;'nJ~'.

J;O
15.16)

Let us substitute these series in (4.2) or in the associated eq uations for the second
fundamental problem, then tend t towards the point of the contour to. regard as the path
of integration the section to - to of the contour (~ = 0") and compute the integrals involved
here in terms of formulae

!
'n'l

_._1J_'_ pjp~n~m for i Z II Z 0
I f'o. (O"-zo) dO" U+n)1 . 1517)
~ io tlY;, ~i ,,/[(0" - to)(O" - toJ] = 0 r .

lor J < II

Here p = J(Z2 + r2 ), fJ = :/p; p~ni(fJ) is the added Legendre function of the first type.
By utilizing the orthogonality of the Legendre functions one can define all the coeffi­

cients of the series. The number ofarbitrary coefficients contained in the solution is sufficient
for satisfying the boundary conditions.

(b) For an ellipsoid of revolution or space with an ellipsoidal cavity the solution may
be sought in the form

(Pn(n = )" AnjKFl,
j=i;;r-l

15.1Kl

<1>n(() = )" CnjK)().
j; in, - 1

(For II = 0 summation begins from zero).
Here I: is the elliptical co-ordinate, characterizing the contour of the axial section of the

solid.
The coefficients of the series (5.18) for the case of the first and second fundamental

problems are in a closed form, if it is considered that

, (t-:u )
I 0(1) K)tlY;,~

----rnT+l j , d t =
rri '0 .j[U- to)(t- to)]

(j -II~Kinl(l:)pinl(fl)
(j+n)' 1 J

for j Z 1111

r5Q~nl(l:)p j- inl( fJ)

forj < Ini.

15.10)

(cos 11 = fJi.

Here Kjn,([;) will be the added Legendre function of the first Pin'(E) or second Qjn'(I:) type
for the internal and external problems, respectively; £5 = 0 for the internal problem, and
r5 = I for the external one. The function Pj-1ni(fJ) is defined by the equation

1 II r1

Pj Inl = ~ . . . Pj({J) (d/l)n
~m 1'/ # _II
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(Reeeh'ed 18 September 19671

A6cTpaKT-npH nOMOUlH cynepn03HuHH YCTaHaBnHBaIOTCll 3aBHCHMOCTH MeiK11Y npocTpaHCTBeHHbtMIi
COCTOllHHlIMIi c 011HOH CTOPOHbl. H :meMeHTapHI>IMH BcnOMoraTenl>HblMH COCTOllHlillMH (nJJOCKlle COCTOllHHlI
H COCTOllHHlI, COOTBeTCTBylOUlHe 11enJJaHaUHH nnOCKIlX Ce'leHIlH UHJJIiH11pH'IeCKIiX TeJJ). c 11pyrOH CTOpOHb!.

B 'laCTHOM CJJy'lae :no 3llBHCHMOCTH MeiK11Y npocTpaHcTBeHHblMli ocecHMMeTpH'IeCKHMH H nJJOCKHMIi
cocrOllHHlIMH.

BblBe11eHHbJe 3aBI1CHMOCTH Hcnonb3YlOTCli 11nll peUleHHlI npocTpaHCTBeHHblX 3a11a'l npl1 nOMOUlH
MeTOItOB TeOpl1H <PYHKUHH KOMnJleKCHOro nepeMeHHoro, npllnOiKeHl1e KOTOpbtX K nJ10CKI1M 3aIta'laM
umpOKO 113BeCTHO.


